
1  Consider a particle of mass 𝑚𝑚 in a one-dimensional infinite square well between 𝑥𝑥 = 0 
and 𝑥𝑥 = 𝑎𝑎.  The normalized energy eigenstates are 𝜓𝜓𝑚𝑚(𝑥𝑥) with corresponding energies 
𝐸𝐸𝑚𝑚, where 𝑛𝑛 = 1 is the ground state.  The particle starts in a state given by,      [5, 5, 10, 5] 
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 𝜓𝜓2(𝑥𝑥)       

a)  If you measure the energy of the particle, what values will you get and with what 
probability? 

b) Now you make a position measurement of the particle.  Are you more likely to find 
the particle in the left half of the well (𝑥𝑥 < 𝑎𝑎/2), or the right half of the well (𝑥𝑥 >
𝑎𝑎/2)?  Justify your answer. 

c) Assuming the particle is in the state Ψ(𝑥𝑥, 𝑡𝑡 = 0) given above, suppose you make a 
high precision position measurement of the particle.  After this position measurement, 
you immediately measure the energy of the particle.  At this point, what possible 
value(s) could you get for the energy of the particle?  (No need to find the 
probabilities of each.)  Clearly explain how you arrive at your answer. 

d) Consider the same scenario as in c), but now instead of making an immediate energy 
measurement, consider waiting some time.  Would the probability of measuring an 
energy of 𝐸𝐸2 depend on how long you wait between the position measurement and the 
energy measurement?  Explain how you arrive at your answer. 

 
 
 
 
 
 



2.  Consider an electron in a linear molecule consisting of three atoms, where the central 
atom Z is located between the left and right atoms L and R like in the figure below. 

    
|𝐿𝐿⟩, |𝑍𝑍⟩, and |𝑅𝑅⟩ denote three orthonormal vectors that correspond to the electron 
localized at the atoms L, Z, and R, respectively, and span the three-dimensional Hilbert 
space.  With respect to the basis {|𝐿𝐿⟩, |𝑍𝑍⟩, |𝑅𝑅⟩} the Hamiltonian of the electron has the 
matrix form 

 ℋ = �
𝑏𝑏 −𝑎𝑎 0
−𝑎𝑎 𝑏𝑏 −𝑎𝑎
0 −𝑎𝑎 𝑏𝑏

�, with 𝑎𝑎 > 0.      [5, 5, 5, 10]  

 
a) Verify that the three states |0⟩, | +⟩, and | −⟩ given by, 
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are eigenstates of ℋ and calculate their corresponding eigenenergies.  Show your 
 work! 

b) Let the electron be in the state | −⟩.  Calculate the probability to find the electron in 
state |𝑍𝑍⟩ (i.e. localized on atom Z). 

c) Calculate the expectation value 〈ℋ〉 and the variance 𝜎𝜎ℋ2  of the Hamiltonian in the 
state |𝐿𝐿⟩. 

d) At 𝑡𝑡 = 0 the electron is localized on atom Z, i.e. it is in the state |Ψ(0)⟩ = |𝑍𝑍⟩.  
Calculate the time evolution of the state |Ψ(𝑡𝑡)⟩ and the probability 𝑃𝑃(𝑡𝑡) =
|⟨𝑍𝑍|Ψ(𝑡𝑡)⟩|2 to find the electron in the state |𝑍𝑍⟩ for 𝑡𝑡 > 0. 

 
 
 
 
 
 
 
 
 
 
  



3.  All of the questions below pertain to a general quantum state |𝑆𝑆(𝑡𝑡)⟩ in Hilbert space. 
          [5, 10, 10] 
(a) Using the completeness property of the momentum eigenstates |𝑝𝑝⟩ express the 

general quantum state |𝑆𝑆(𝑡𝑡)⟩ in the momentum basis. 
(b) Derive the transformation from the momentum-space wavefunction Φ(𝑝𝑝, 𝑡𝑡) to the 

“energy space” wavefunction 𝑐𝑐𝑚𝑚(𝑡𝑡) = 〈𝑛𝑛|𝑆𝑆(𝑡𝑡)〉, where ℋ� |𝑛𝑛⟩ = 𝐸𝐸𝑚𝑚|𝑛𝑛⟩, with 𝑛𝑛 =
1,2,3, …. 

(c) Find the momentum operator in the basis of simple harmonic oscillator energy 
eigenstates.  In other words, express 〈𝑛𝑛|�̂�𝑝|𝑆𝑆(𝑡𝑡)〉 in terms of 𝑐𝑐𝑚𝑚(𝑡𝑡) = 〈𝑛𝑛|𝑆𝑆(𝑡𝑡)〉.  {Hint: 
the matrix elements of the momentum operator in the harmonic oscillator basis are 

given by: ⟨𝑛𝑛|�̂�𝑝|𝑛𝑛′⟩ = 𝑖𝑖�𝑚𝑚ℏ𝜔𝜔
2
�√𝑛𝑛 𝛿𝛿𝑚𝑚′,𝑚𝑚−1 − √𝑛𝑛′ 𝛿𝛿𝑚𝑚,𝑚𝑚′−1�} 

 
 
 
 
 
  



4.  Consider a particle of mass 𝑚𝑚 subjected to a finite spherical well potential:  

 𝑒𝑒(𝑟𝑟) = �−𝑒𝑒0,       𝑟𝑟 ≤ 𝑎𝑎
0,            𝑟𝑟 > 𝑎𝑎  with 𝑒𝑒0 > 0. 

We are interested in bound states of this potential.   [5, 5, 10, 5] 
 
(a)  Make a plot of the potential 𝑒𝑒(𝑟𝑟) as a function of 𝑟𝑟.  What is the range of possible 
  bound state energies 𝐸𝐸 for this potential (give both the lower and upper limits)? 
(b)  Since this potential is spherically symmetric, the time-independent Schrodinger 
 equation in spherical coordinates simplifies considerably, and the solution is of 
 the form 𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑅𝑅(𝑟𝑟)𝑌𝑌ℓ𝑚𝑚(𝜃𝜃,𝜙𝜙).  Write out the radial equation for  
 𝑢𝑢(𝑟𝑟) ≡ 𝑟𝑟𝑅𝑅(𝑟𝑟) that results for this problem.  (Don’t derive it, just copy it from the 
 formula sheet!) 
(c)  Now assume that ℓ = 0 and solve for 𝑢𝑢(𝑟𝑟) in the regions 𝑟𝑟 ≤ 𝑎𝑎 and 𝑟𝑟 > 𝑎𝑎, making 
 sure that both solutions for 𝑢𝑢(𝑟𝑟) (and 𝑅𝑅(𝑟𝑟)) are finite in their respective domains. 
(d)  Enforce the continuity conditions for the two solutions at 𝑟𝑟 = 𝑎𝑎 and derive an 
 implicit (transcendental) equation for the bound state energies 𝐸𝐸.  Do not try to 
 solve for 𝐸𝐸, unless you are really bored! 
 
 
 




